

Transporte

Érica Ferraz

Vanderley John Vanessa Bessa

SBCS10 | SB10 Brazil

3º Simpósio Brasileiro de Construção Sustentável

Sustentabilidade nos Negócios e Instrumentos de Mudança

CO₂ no transporte

- Ciclo de vida da Infraestrutura viária
 - Pontes,
 - Estradas,
 - Garagem...
- Ciclo de vida dos Veículos
 - Produção,
 - Manutenção,
 - Descarte.

Combustível

- Extração / produção
- Processamento
- Transporte
- Combustão

$$C + O_2 \rightarrow CO_2 + E$$

CÁLCULO DA GERAÇÃO DE CO₂

Variáveis do impacto

combustível x motor x distância

Baixa emissão líquida de CO₂

Compatibilidade entre necessidades e máquina; eficiência

Deslocamentos minimizados

Outras variáveis: Massa transportada, eficiência do motor, topografia do percurso, condições de fluxo, qualidade das vias e infraestrutura, motorista, condições de clima, etc.

Rotas de cálculo das emissões

- Cálculo A: Consumo de combustível conhecido
 - Litros consumidos
- Cálculo B: Consumo de combustível desconhecido
 - Investigar consumo a partir da distância e meio de transporte provável

CÁLCULO A: CONSUMO DE COMBUSTÍVEL

Emissão total

litros consumidos

X

fator de emissão do combustível

Fator de emissão do combustível

	Emissão Mínima	Emissão Máxima		
Combustível	KgCO ₂ /litro			
Diesel	3,33	3,41		
Gasolina 20% etanol	2,10	2,21		
Gasolina 25% etanol	2,00	2,11		
Etanol hidratado	0,49	0,61		

Fonte: adaptado de MCT (2006); Macedo (2008); CARB (2010); Cetesb (2010); Crago (2010)

Hipótese:

Consumo semanal de 1 tanque de etanol

~ 40 litros semanais

Hipótese: emissão semanal

40 litros etanol

X

0,49 a 0,61 KgCO₂/litro

Fator de emissão para 1 litro:

Diesel: 3,3 a 3,4 KgCO₂ / Gasolina 80: 2,1 a 2,3 KgCO₂ / Etanol: 0,49 a 0,61 KgCO₂

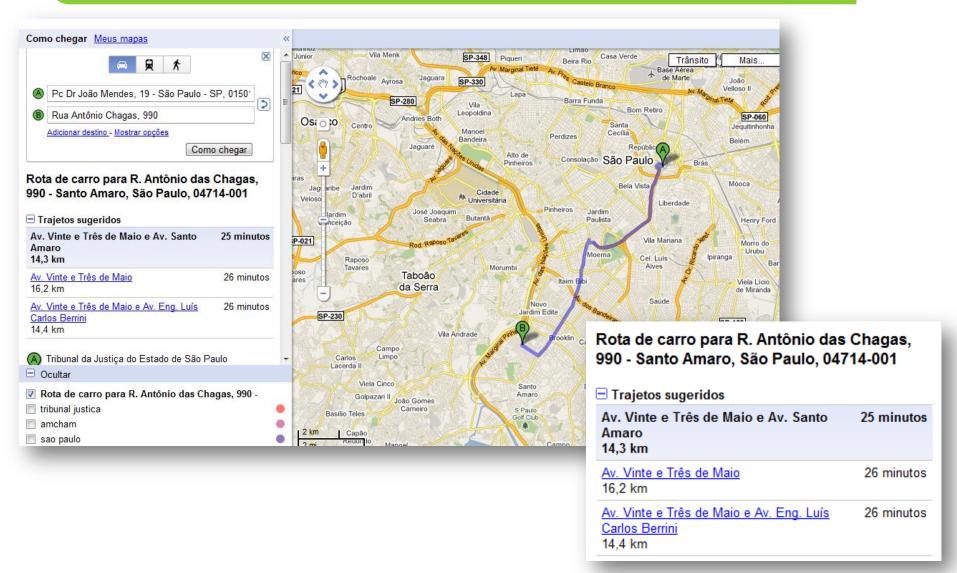
Hipótese: emissão semanal

19,4 a 24,4 KgCO₂

CÁLCULO B: KM RODADO

Emissão total

Quilometros rodados


X

fator de emissão do combustível por Km

- Google: maps.google.com
- Apontador: apontador.com.br
- Maplink: maplink.uol.com.br
- Quatro Rodas: quatrorodas.abril.com.br
- ABCR: abcr.org.br/geode

Levantar consumo de combustível: km/litros

– Inmetro:

quatrorodas.abril.com.br/reportagens/lista_inmetro.pdf

– Testes de consumo:

quatrorodas.abril.com.br/QR2/carros/testes revistaautoesporte.globo.com

Medição

Consumo de combustível = <u>km rodado</u> eficiência carro

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL

PROGRAMA BRASILEIRO DE ETIQUETAGEM - PBE

Tabelas de Consumo / Eficiência Energética

Veículos Automotores Leves

Categoria COMPACTO

Veículos de passageiros com área de 6,5 até 7,0m2 (+/- 0,1m2)

Modelos com Classificação para ENCE

Nº de modelos declarados adequado para comparação estatística na categoria

Ano 2009

4 Marcas

14 Modelos

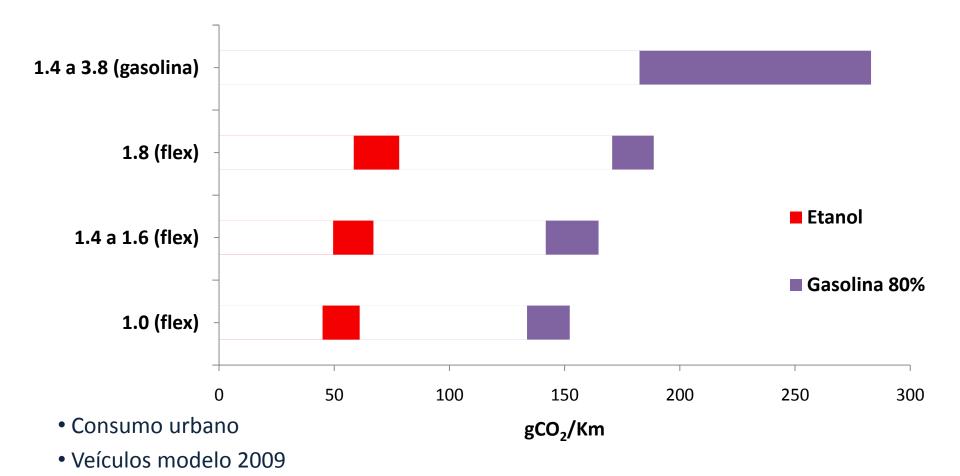
Etiqueta Nacional de Conservação de Energia - ENCE Classificação quanto ao consumo energético

Menor consumo na categoria 🕨	Α
	В
	С
	D
Maior consumo na categoria ▶	E

Valores de referência medidos em laboratório, conforme norma NBR 7024, com ciclos de condução e combustíveis padrão, podendo não corresponder ao consumo verificado com o uso do veículo, que depende de condições do trânsito, do combustível. do recorde obstituidos do motomista.

Marca N	Modelo Versão		Motor	Transmissão Velocidades (nº)	- Ar Cond.	Direção Assistida	Combustível	bustível Q		Quilometragem por litro		
		Versão		Manual (M) Automática (A) Automatizada (MTA) Contínua (CVT)		Hidráulica (H) Mecânica (M)	Álcool (A) Gasolina (G) Flex (F)	Cidade (ciclo urbano)		Estrada (ciclo rodoviário)		Classificação 2009
					Sim (S) Não (N)	Elétrica (E) Eletro-hidráulica (E-H)		Álcool (km/l)	Gasolina (km/l)	Álcool (km/l)	Gasolina (km/l)	
HONDA	Fit	EX EXL	1.5L - 16V	A 5	S	E	F	9,0	13,5	12,0	17,6	С
VOLKSWAGEN	Gol	1.0 L	1.0	M 5	S	Н	F	9,5	13,9	13,5	19,9	Α
VOLKSWAGEN	Gol	1.6 L 1.6 Power	1.6	M 5	s	Н	F	9,1	13,4	13,2	19,3	В
VOLKSWAGEN	Polo	BlueMotion	1.6	M 5	S	E-H	F	9,5	13,8	14,9	21,2	Α

- Com dado de consumo de combustível:
 - Seguir Cálculo A: Emissão total = litros
 consumidos x fator de emissão do combustível



Fator de emissão por km - consumo urbano

Motor	Etanol (gCO ₂ /Km)		Gasolina 20% etanol (gCO₂/Km		
1.0 (flex)	44,9	61,0	133,7	152,2	
1.4 a 1.6 (flex)	49,5	67,0	141,8	164,7	
1.8 (flex)	58,4	78,2	170,7	188,7	
1.4 a 3.8 (gasolina)			182,5	283,0	

Comparação entre Carros e Combustíveis

Fonte: adaptado de Inmetro (2009); MCT (2006); Macedo (2008); CARB (2010); Cetesb (2010); Crago (2010)

Hipótese:

Percurso **50 km** carro **1.0** flex - combustível **etanol**

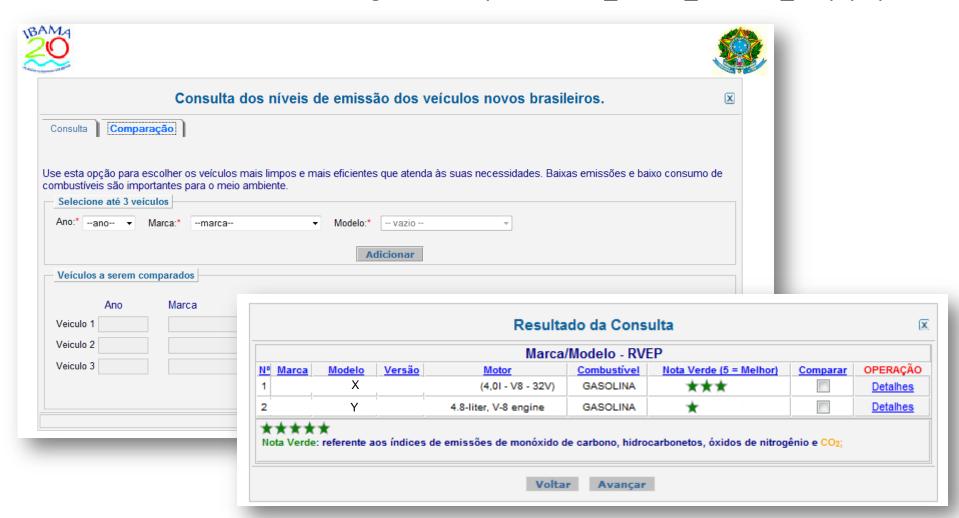
Hipótese: carro 1.0 com etanol

50 km

X

 $44,9 \text{ a } 61 \text{ gCO}_2/\text{km}$

Hipótese: carro 1.0 com etanol


2,2 a **3,1** KgCO₂

Ferramenta comparativa

Nota Verde: servicos.ibama.gov.br/ctf/publico/sel_marca_modelo_rvep.php

Ferramenta comparativa

servicos.ibama.gov.br/ctf/publico/sel_marca_modelo_rvep.php

	Detalhes da Marca/Modelo	(
Dados da Marca/Model	0			
Nota Verde:				

Marca:*				
Modelo:*				
Modelo:*				
Ano:	2.010			
Configuração/Motor:	(4,0I - V8 - 32V)			
Combustível:	GASOLINA			
Dados do ensaio				
NMHC (g/km):	0,017			
CO (g/km):	0,209			
NOx (g/km):	0,021			
CO ₂ (Calculado) (g/km):	119,120			
Dados de Consumo				
	Tabela de consumo/eficiência energética			
INMETRO B ID C IQue na imagem para obter a tabela.				

TRANSPORTE DE CARGAS: MADEIRA

Consumo de combustível e geração CO₂ no transporte de cargas

Consumo Diesel	Emissão Mínima	Emissão Máxima
litros/1000 (t.km)	kgCO ₂ /1000 (t.km)	kgCO ₂ /1000 (t.km)
76,0	253,1	259,5
82,3	274,1	281,0
96,0	319,8	327,8

Variáveis do consumo: massa transportada, eficiência do motor, topografia do percurso, condições de fluxo, qualidade das vias e infraestrutura, motorista, condições de clima, etc.

Fonte: adaptado de WRI/GHG Protocol (2010); FIPE (2010); MME (2010); MT (2007)

Hipótese 1:

- 10 m³ de produtos madeireiros
- Densidade 800 Kg/m³
- 800 Km

Hipótese 1:

 $10 \text{ m}^3 \times 0.8 \text{ ton/m}^3 \times 800 \text{ Km} \times \text{fator de emissão}$ $0.253 \text{ a } 0.328 \text{ KgCO}_2/\text{tkm}$

Emissão no transporte =

1,6 a 2,1 ton CO₂

Hipótese 2:

"A tora de pequiá de 6 toneladas na recepção: a peça veio do Pará de caminhão e exigiu um reforço na laje da construção para que seu peso fosse suportado."

Fonte:

veja.abril.com.br/vejarj/150807/capa.html

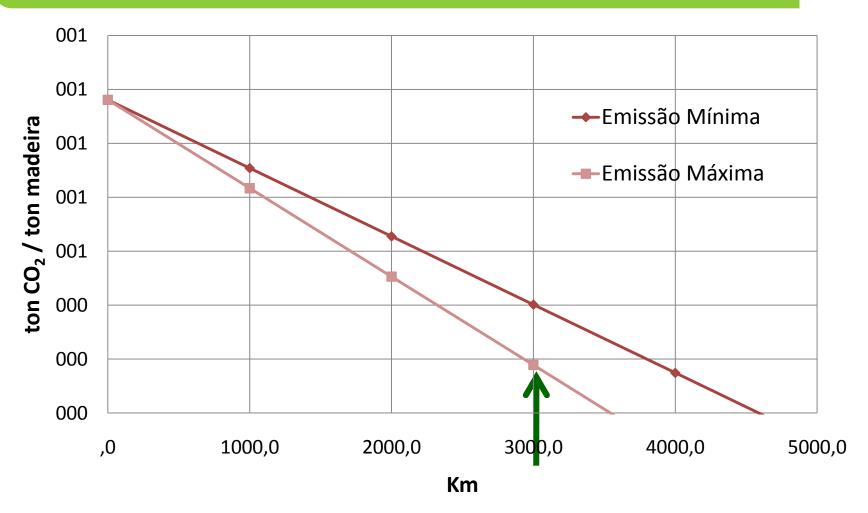
Hipótese balcão madeira:

- Belém (PA) a Rio de Janeiro (RJ)
 - Cerca de 3.000 km
- -6 toneladas de madeira nativa

Emissão no transporte =

4,6 a 5,9 tonCO₂

Hipótese balcão madeira:


6 ton madeira nativa fresca = 7 tonCO₂

Após transporte:

CO₂ fixado de 2,4 a 1,1 tonCO₂

Madeira manejada: Redução CO₂

1 ton madeira fresca = 0,65 ton biomassa seca = 0,32 ton C = 1,15 ton CO_2 Fator de emissão Diesel: 3,3 a 3,4 Kg CO_2 /litro

Referências

BEC-UK, 2010. Endereço eletrônico: www.biomassenergycentre.org.uk/. Acesso em novembro de 2010.

CARB, 2010. Endereço eletrônico: http://greet.es.anl.gov/. Acesso em novembro de 2010.

CETESB, 2010. Endereço eletrônico: http://homologa.ambiente.sp.gov.br/proclima/PDF/inventario efeitoestufa.pdf. Acesso em outubro de 2010.

CRAGO, C. L.; KHANNA, M.; BARTON, J.; GIULIANI, E.; AMARAL, W. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. **Energy Policy**, v. 38, n. 11, p. 7404-7415, 2010.

EPE/MME. 2010. Balanço Energético Nacional 2010: Ano Base 2009. . Rio de Janeiro: s.n., 2010.

FIPE. 2010. IDET. Fundação Instituto de Pesquisas Econômicas. [Online] 2010. http://www.fipe.org.br/web/index.asp.

IBAMA, 2010. Endereço eletrônico: servicos.ibama.gov.br/ctf/publico/sel_marca_modelo_rvep.php. Acesso em novembro de 2010.

INMETRO, 2009. Endereço eletrônico: http://quatrorodas.abril.com.br/reportagens/lista inmetro.pdf. Acesso em outubro de 2010.

MACEDO, I. C.; SEABRA, J. E.; SILVA, J. E. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. **Biomass and Bioenergy**, v. 32, n. 7, p. 582-595, 2008.

MACEDO E SEABRA, 2008. Endereço eletrônico: http://www.etanolverde.com.br/upload/arquivos/cartilha_nova.pdf. Acesso em outubro de 2010.

MAUGERI, L. Squeezing More Oil from the Ground. **Scientific American**, v. 301, n. 4, p. 56-63, 2009.

MCT, 2006. Emissões de Gases de Efeito Estufa por Fontes Móveis, no Setor Energético – Relatórios de Referência. Endereço Eletrônico: http://www.mct.gov.br/index.php/content/view/17352.html. Acesso em setembro de 2009.

MT, 2007. Ministério dos Transportes. Endereço eletrônico:

http://www.abgroup.com.br/download/LuizEduardoFEBCHidroviasdoBrasil.pdf. Acesso em outubro de 2009.